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MATHEMATICAL MODEL 

Fluid – Structure Interaction Problem

The fluid is assumed ideal, i.e., inviscid and incompressible, and its

motion is irrotational and there exists a fluid velocity vector, v, which

can be defined as the gradient of the velocity potential function Φ as

(1)

The velocity potential Φ may be expressed as

(2)

( , , , ) ( , , , )x y z t Φ x y z t= ∇v

Φ U x φ= +



MATHEMATICAL MODEL 

Fluid – Structure Interaction Problem

Here the steady velocity potential U x represents the effect of the

mean flow associated with the undisturbed flow velocity U in the

Axial direction. Further,Φ is the unsteady velocity potential

associated with the perturbations to the flow field due to the motion

of the flexible body and satisfies the Laplace equation

(3)

throughout the fluid domain. For the structure immersed in and/or

containing flowing fluid, the vibratory response of the structure may

be expressed in terms of principal coordinates as

(4)

2 0φ∇ =

( ) e tt λ= 0p p



MATHEMATICAL MODEL 

Fluid – Structure Interaction Problem

The velocity potential function due to the distortion of the structure in

the rth in vacuo vibrational mode may be written as follows

(5)

where M represents the number of modes of interest, and p0r is an

unknown complex amplitude for the rth principal coordinate.

On the wetted surface of the vibrating structure the normal fluid velocity

must equal to the normal velocity on the structure and this condition for

the rth modal vibration of the elastic structure containing and/or

submerged in flowing fluid can be expressed as

(6)
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MATHEMATICAL MODEL 

Fluid – Structure Interaction Problem

The vector ur denotes the displacement response of the structure in the

rth principal coordinate and it may be written as

(7)

Substituting Eqs. (5) and (7) into (6), the following expression is

obtained for the boundary condition on the fluid-structure interface

(8)
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MATHEMATICAL MODEL 

Fluid – Structure Interaction Problem

It is assumed that the elastic structure vibrates at relatively high

frequencies so that the effect of surface waves can be neglected.

Therefore, the free surface condition (infinite frequency limit condition)

for the perturbation potential can be approximated by

on the free surface                                             (9)

The method of images may be used to satisfy this boundary condition.

By adding an imaginary boundary region, the condition given by Eq.

(9) at the horizontal surface can be omitted; thus the problem is

reduced to a classical Neumann case. It should be noted that, for the

completely filled elastic structure, the normal fluid velocity cannot be

arbitrarily specified. It has to satisfy the incompressibility condition

(10)
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MATHEMATICAL MODEL 

Numerical Evaluation of Perturbation Potential

The boundary value problem for the perturbation potential, may be

expressed in the following form:

(11)

where ξ and s denote, respectively, the evaluation and field points on

the wetted surface. is the fundamental solution and expressed as

follows,

(12)

* *( ) ( ) ( ( , ) ( ) ( ) ( , ))

WS

c s q s s q s dSξ φ ξ φ ξ φ ξ= −∫∫

* 1
( , )

4
s

r
φ ξ

π
=



MATHEMATICAL MODEL 

Numerical Evaluation of Perturbation Potential

is the flux, and r the distance between the evaluation

and field points. The free term is defined as the fraction of that lies

inside the domain of interest. Moreover, can be written as

(13)

The fluid-structure interaction problem may be separated into two

parts: (i) the vibration of the elastic structure in a quiescent fluid, and

(ii) the disturbance in the main axial flow due to the oscillation of the

structure. Thus, defining , Eq (7) may be divided into two separate

parts as

(14a,b)
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MATHEMATICAL MODEL 

Numerical Evaluation of Perturbation Potential

For the solution of Eq. (11) with boundary conditions (14a and b), the wetted

surface can be idealized by using boundary elements, referred to as

hydrodynamic panels, and the distribution of the potential function and its flux

over each hydrodynamic panel may be described in terms of the shape functions

and nodal values as

(15)

Here, ne represents the number of nodal points assigned to each hydrodynamic

panel, and Nej the shape function adopted for the distribution of the potential

function. e and j indicates the numbers of the  hydrodynamic panels and nodal

points, respectively. 
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MATHEMATICAL MODEL 

Numerical Evaluation of Perturbation Potential

In the case of a linear distribution adopted in this study, the shape 

functions for a quadrilateral panel may be expressed as

(16)
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MATHEMATICAL MODEL 

Numerical Evaluation of Perturbation Potential

After substituting Eqs. (15) and (16) into Eq. (11) and applying the

boundary conditions given in Eqs. (14a) and (14b), the unknown

potential function values can be determined from the following sets of

algebraic equations 

(17 a)

k = 1, 2, ..... , m

where m denotes the number of nodal points used in the discretization of

the structure 
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MATHEMATICAL MODEL 

Calculation of Generalized Fluid-Structure

Interaction Force Coefficients
Using the Bernoulli’s equation and neglecting the second order terms, the 

dynamic fluid pressure on the elastic structure due to the rth modal vibration

becomes 

(18)

Substituting equation (5) into (18), the following expression for the pressure is 

obtained,

(19)
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MATHEMATICAL MODEL 

Calculation of Generalized Fluid-Structure

Interaction Force Coefficients

By using the definition of , equation (19) may be

rewritten in the following form:

(20)

The kth component of the generalized fluid-structure interaction force

due to the rth modal in-vacuo vibration of the elastic structure subjected

to axial flow can be expressed in terms of the pressure acting on the

wetted surface of the structure as 
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MATHEMATICAL MODEL 

Calculation of Generalized Fluid-Structure

Interaction Force Coefficients
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MATHEMATICAL MODEL 

Calculation of Generalized Fluid-Structure

Interaction Force Coefficients

The generalized added mass, Akr, generalized fluid damping (due to the

Coriolis effect of fluid), Bkr and generalized fluid stiffness (due to the centrifugal

effect of fluid), Ckr, terms can be defined as

(22)

(23)
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MATHEMATICAL MODEL 

Calculation of Generalized Fluid-Structure

Interaction Force Coefficients

Therefore, the generalized fluid-structure interaction force component,

Zkr, can be written as

(25)
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MATHEMATICAL MODEL 

Calculation of Wet Frequencies and Mode Shapes

The generalized equation of motion for the elastic structure in contact

with axial flow assuming free vibrations with no structural damping is

(26)

where a and c denote the generalized structural mass and stiffness

matrices, respectively, and they are calculated by using a standard

finite element program [21]. The matrices A, B and C represent the

generalized added mass, generalized fluid damping and generalized

fluid stiffness matrices, respectively.

,0)()()(2 =
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Hydroelastic Investigation of a 1900 TEU 

Container Ship





Hydroelastic Investigation of a 1900 TEU 

Container Ship – FE Model

• FE calculations were carried out by Delta 

Marine, Turkey.

• Abaqus employed for the FE calculations

• Ship Model is developed in two parts;

Aft part consists of engine room, poop deck, aft 

peak and Superstructure decks.

Fore part consists of cargo area, fore peak, 

forecastle deck

• Fine mesh density is used for the aft part model



Hydroelastic Investigation of a 1900 TEU 

Container Ship – FE Model

• Cargo loading is applied as inertia mass 

elements distributed over the cargo area 

inner bottom plating

• Ballast weights, heavy fuel oil and other 

tank weights are also applied as inertial 

mass elements.

• Finite elements model has 176030 nodes, 

176800 structural elements 



Hydroelastic Investigation of a 1900 TEU 

Container Ship – FE Model – Loading Cond.

• Full loading with design draught of 10 m.

• Cargo loading – 17150 t

• Ballast weight – 3021 t

• Heavy fuel oil – 1886 t

• Marine diesel oil – 165 t

• Fresh water – 206 t

• Other tank weights – 165 t



Hydroelastic Investigation of a 1900 TEU 

Container Ship – FE Model – Loading Cond.

• LWT – 9000 t

• DWT – 22595.7 t

• Total Weight – 31595.7 t

• Total Finite Element Weight – 31520 t

• LCG – 79.85 m

• LCG – FEM – 80.3 m 













Dry Freq = 1.119 Hz



Dry Freq = 1.331 Hz



Dry Freq = 1.515 Hz



Dry Freq = 1.676 Hz



Hydroelastic Investigation of a 1900 TEU 

Container Ship – BE Model

• Number of nodes = 10674 12 in vacuo modes employed in the analysis

• Number of elements = 10772





Hydroelastic Investigation of a 1900 TEU 

Container Ship – FE Wet Model

• 60300 fluid elements are used to model 

the behavior of fluid surrounding the ship 

hull.







Comparison of Wet BE and FE 

Results



NUMERICAL RESULTS

Fluid Storage Tanks



NUMERICAL RESULTS

Fluid Storage Tanks

[5] T. Mazúch, J. Horáček, J. Trnka, J. Veselý, Natural modes and frequencies of a thin 
clamped-free cylindrical storage tank partially filled with water: FEM and measurements, 
Journal of Sound and Vibration, Vol.193, pp.669-690, 1996



NUMERICAL RESULTS

Fluid Storage Tanks



NUMERICAL RESULTS

Fluid Storage Tanks



NUMERICAL RESULTS

Fluid Storage Tanks



NUMERICAL RESULTS

Elastic Structure Containing Axial Flow



NUMERICAL RESULTS

Elastic Structure Containing Axial Flow

The structure adopted for calculations is a finite length cylindrical shell, 

simply supported at both ends, and it was analytically investigated by

Weaver and Unny (1973), Selmane and Lakis (1997), Amabili et al

(1999) and Amabili and Garziera (2002). The shell structure has the

geometric and material properties: length-to-radius ratio L/R = 2, 

thickness-to-radius ratio h/R = 0.01, Young’s modulus E = 206 GPa,

Poisson’s ratio υ = 0.3, and mass density ρs = 7850 kg/m3. Fresh water 

is used as the contained fluid with a density of ρf = 1000 kg/m3.



NUMERICAL RESULTS

Elastic Structure Containing Axial Flow
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NUMERICAL RESULTS

Elastic Structure Containing Axial Flow
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NUMERICAL RESULTS

Elastic Structure Containing Axial Flow
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NUMERICAL RESULTS

Elastic Structure Containing Axial Flow
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Conclusions

• It can also be said that the hybrid method introduced in this study 

can be applied to any shape of cylindrical structure partially in 

contact with internal and/or external flowing fluid, in contrast to the 

studies found in the literature.

• The present study has demonstrated the versatility of the method

developed before and extended in this study further. By introducing 

the linearly varying boundary elements in this study, the 

convergence of the numerical predictions were obtained much faster 

than those using constant distributions over the boundary elements.

• the predicted frequency values behave as expected. It is to say that 

they decrease with increasing non-dimensional axial flow velocity, 

and they reach a zero frequency for the axial flow velocity at which a 

static divergence occurs.
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MATHEMATICAL MODEL 

Fluid – Structure Interaction Problem

The fluid is assumed ideal, i.e., inviscid and incompressible, and its

motion is irrotational and there exists a fluid velocity vector, v, which

can be defined as the gradient of the velocity potential function Φ as

(1)

The velocity potential Φ may be expressed as

(2)

( , , , ) ( , , , )x y z t Φ x y z t= ∇v

Φ U x φ= +



MATHEMATICAL MODEL 

Fluid – Structure Interaction Problem

Here the steady velocity potential U x represents the effect of the

mean flow associated with the undisturbed flow velocity U in the

Axial direction. Further,Φ is the unsteady velocity potential

associated with the perturbations to the flow field due to the motion

of the flexible body and satisfies the Laplace equation

(3)

throughout the fluid domain. For the structure immersed in and/or

containing flowing fluid, the vibratory response of the structure may

be expressed in terms of principal coordinates as

(4)

2 0φ∇ =

( ) e tt λ= 0p p



MATHEMATICAL MODEL 

Fluid – Structure Interaction Problem

The velocity potential function due to the distortion of the structure in

the rth in vacuo vibrational mode may be written as follows

(5)

where M represents the number of modes of interest, and p0r is an

unknown complex amplitude for the rth principal coordinate.

On the wetted surface of the vibrating structure the normal fluid velocity

must equal to the normal velocity on the structure and this condition for

the rth modal vibration of the elastic structure containing and/or

submerged in flowing fluid can be expressed as

(6)

0( , , , ) ( , , ) e t
r r rx y z t x y z p λφ φ=

( )r r rU
n t x
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MATHEMATICAL MODEL 

Fluid – Structure Interaction Problem

The vector ur denotes the displacement response of the structure in the

rth principal coordinate and it may be written as

(7)

Substituting Eqs. (5) and (7) into (6), the following expression is

obtained for the boundary condition on the fluid-structure interface

(8)
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MATHEMATICAL MODEL 

Fluid – Structure Interaction Problem

It is assumed that the elastic structure vibrates at relatively high

frequencies so that the effect of surface waves can be neglected.

Therefore, the free surface condition (infinite frequency limit condition)

for the perturbation potential can be approximated by

on the free surface                                             (9)

The method of images may be used to satisfy this boundary condition.

By adding an imaginary boundary region, the condition given by Eq.

(9) at the horizontal surface can be omitted; thus the problem is

reduced to a classical Neumann case. It should be noted that, for the

completely filled elastic structure, the normal fluid velocity cannot be

arbitrarily specified. It has to satisfy the incompressibility condition

(10)
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MATHEMATICAL MODEL 

Numerical Evaluation of Perturbation Potential

The boundary value problem for the perturbation potential, may be

expressed in the following form:

(11)

where ξ and s denote, respectively, the evaluation and field points on

the wetted surface. is the fundamental solution and expressed as

follows,

(12)
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WS

c s q s s q s dSξ φ ξ φ ξ φ ξ= −∫∫

* 1
( , )

4
s

r
φ ξ

π
=



MATHEMATICAL MODEL 

Numerical Evaluation of Perturbation Potential

is the flux, and r the distance between the evaluation

and field points. The free term is defined as the fraction of that lies

inside the domain of interest. Moreover, can be written as

(13)

The fluid-structure interaction problem may be separated into two

parts: (i) the vibration of the elastic structure in a quiescent fluid, and

(ii) the disturbance in the main axial flow due to the oscillation of the

structure. Thus, defining , Eq (7) may be divided into two separate

parts as

(14a,b)
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MATHEMATICAL MODEL 

Numerical Evaluation of Perturbation Potential

For the solution of Eq. (11) with boundary conditions (14a and b), the wetted

surface can be idealized by using boundary elements, referred to as

hydrodynamic panels, and the distribution of the potential function and its flux

over each hydrodynamic panel may be described in terms of the shape functions

and nodal values as

(15)

Here, ne represents the number of nodal points assigned to each hydrodynamic

panel, and Nej the shape function adopted for the distribution of the potential

function. e and j indicates the numbers of the  hydrodynamic panels and nodal

points, respectively. 
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MATHEMATICAL MODEL 

Numerical Evaluation of Perturbation Potential

In the case of a linear distribution adopted in this study, the shape 

functions for a quadrilateral panel may be expressed as

(16)
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MATHEMATICAL MODEL 

Numerical Evaluation of Perturbation Potential

After substituting Eqs. (15) and (16) into Eq. (11) and applying the

boundary conditions given in Eqs. (14a) and (14b), the unknown

potential function values can be determined from the following sets of

algebraic equations 

(17 a)

k = 1, 2, ..... , m

where m denotes the number of nodal points used in the discretization of

the structure 
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MATHEMATICAL MODEL 

Calculation of Generalized Fluid-Structure

Interaction Force Coefficients
Using the Bernoulli’s equation and neglecting the second order terms, the 

dynamic fluid pressure on the elastic structure due to the rth modal vibration

becomes 

(18)

Substituting equation (5) into (18), the following expression for the pressure is 

obtained,

(19)
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MATHEMATICAL MODEL 

Calculation of Generalized Fluid-Structure

Interaction Force Coefficients

By using the definition of , equation (19) may be

rewritten in the following form:

(20)

The kth component of the generalized fluid-structure interaction force

due to the rth modal in-vacuo vibration of the elastic structure subjected

to axial flow can be expressed in terms of the pressure acting on the

wetted surface of the structure as 
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MATHEMATICAL MODEL 

Calculation of Generalized Fluid-Structure

Interaction Force Coefficients
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MATHEMATICAL MODEL 

Calculation of Generalized Fluid-Structure

Interaction Force Coefficients

The generalized added mass, Akr, generalized fluid damping (due to the

Coriolis effect of fluid), Bkr and generalized fluid stiffness (due to the centrifugal

effect of fluid), Ckr, terms can be defined as

(22)
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MATHEMATICAL MODEL 

Calculation of Generalized Fluid-Structure

Interaction Force Coefficients

Therefore, the generalized fluid-structure interaction force component,

Zkr, can be written as

(25)
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MATHEMATICAL MODEL 

Calculation of Wet Frequencies and Mode Shapes

The generalized equation of motion for the elastic structure in contact

with axial flow assuming free vibrations with no structural damping is

(26)

where a and c denote the generalized structural mass and stiffness

matrices, respectively, and they are calculated by using a standard

finite element program [21]. The matrices A, B and C represent the

generalized added mass, generalized fluid damping and generalized

fluid stiffness matrices, respectively.
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Hydroelastic Investigation of a 1900 TEU 

Container Ship





Hydroelastic Investigation of a 1900 TEU 

Container Ship – FE Model

• FE calculations were carried out by Delta 

Marine, Turkey.

• Abaqus employed for the FE calculations

• Ship Model is developed in two parts;

Aft part consists of engine room, poop deck, aft 

peak and Superstructure decks.

Fore part consists of cargo area, fore peak, 

forecastle deck

• Fine mesh density is used for the aft part model



Hydroelastic Investigation of a 1900 TEU 

Container Ship – FE Model

• Cargo loading is applied as inertia mass 

elements distributed over the cargo area 

inner bottom plating

• Ballast weights, heavy fuel oil and other 

tank weights are also applied as inertial 

mass elements.

• Finite elements model has 176030 nodes, 

176800 structural elements 



Hydroelastic Investigation of a 1900 TEU 

Container Ship – FE Model – Loading Cond.

• Full loading with design draught of 10 m.

• Cargo loading – 17150 t

• Ballast weight – 3021 t

• Heavy fuel oil – 1886 t

• Marine diesel oil – 165 t

• Fresh water – 206 t

• Other tank weights – 165 t



Hydroelastic Investigation of a 1900 TEU 

Container Ship – FE Model – Loading Cond.

• LWT – 9000 t

• DWT – 22595.7 t

• Total Weight – 31595.7 t

• Total Finite Element Weight – 31520 t

• LCG – 79.85 m

• LCG – FEM – 80.3 m 













Dry Freq = 1.119 Hz



Dry Freq = 1.331 Hz



Dry Freq = 1.515 Hz



Dry Freq = 1.676 Hz



Hydroelastic Investigation of a 1900 TEU 

Container Ship – BE Model

• Number of nodes = 10674 12 in vacuo modes employed in the analysis

• Number of elements = 10772





Hydroelastic Investigation of a 1900 TEU 

Container Ship – FE Wet Model

• 60300 fluid elements are used to model 

the behavior of fluid surrounding the ship 

hull.







Comparison of Wet BE and FE 

Results
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[5] T. Mazúch, J. Horáček, J. Trnka, J. Veselý, Natural modes and frequencies of a thin 
clamped-free cylindrical storage tank partially filled with water: FEM and measurements, 
Journal of Sound and Vibration, Vol.193, pp.669-690, 1996
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Elastic Structure Containing Axial Flow



NUMERICAL RESULTS

Elastic Structure Containing Axial Flow

The structure adopted for calculations is a finite length cylindrical shell, 

simply supported at both ends, and it was analytically investigated by

Weaver and Unny (1973), Selmane and Lakis (1997), Amabili et al

(1999) and Amabili and Garziera (2002). The shell structure has the

geometric and material properties: length-to-radius ratio L/R = 2, 

thickness-to-radius ratio h/R = 0.01, Young’s modulus E = 206 GPa,

Poisson’s ratio υ = 0.3, and mass density ρs = 7850 kg/m3. Fresh water 

is used as the contained fluid with a density of ρf = 1000 kg/m3.
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Elastic Structure Containing Axial Flow
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Elastic Structure Containing Axial Flow
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Elastic Structure Containing Axial Flow
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Conclusions

• It can also be said that the hybrid method introduced in this study 

can be applied to any shape of cylindrical structure partially in 

contact with internal and/or external flowing fluid, in contrast to the 

studies found in the literature.

• The present study has demonstrated the versatility of the method

developed before and extended in this study further. By introducing 

the linearly varying boundary elements in this study, the 

convergence of the numerical predictions were obtained much faster 

than those using constant distributions over the boundary elements.

• the predicted frequency values behave as expected. It is to say that 

they decrease with increasing non-dimensional axial flow velocity, 

and they reach a zero frequency for the axial flow velocity at which a 

static divergence occurs.


